十八书屋 - 都市小说 - 我真的只想当一个学神啊在线阅读 - 第一百八十一章 纳维-斯托克斯方程

第一百八十一章 纳维-斯托克斯方程

    对于普通人来说,比起黎曼猜想、费马大定理、哥德巴赫猜想等世界知名的数学难题,“纳维-斯托克斯方程”显然颇为陌生,甚至不知道这到底是什么玩意。

    但对于从小就喜欢数学和理科的秦克来说,“纳维-斯托克斯方程”却是如雷贯耳的存在!

    “纳维-斯托克斯方程”,即(Navier-Stokesequation),简称N-S方程,是数学届与物理届都非常知名的一个非线性偏微分方程组,被业界称为“流体运动的牛顿第二定律”,主要描述了粘性不可压缩流体(如液体和空气等)流动的基本力学规律。

    这个运动方程自1827年由克劳德·路易·纳维(Claude-LouisNavier)根据以流体动量守恒的理论提出后,泊松、圣维南和乔治·斯托克斯分别进行了深入研究,并最终在1945年推导出来,形成一系列复杂至极的方程组。

    N-S方程也被誉为世上最有用的方程组之一,因为它建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力、产生于分子的相互作用)以及引力之间的关联。

    正是因为它建立了这样的关联,使得它可以描述出液体任意给定区域的力的动态平衡,是流体流动建模的核心,在流体力学中有十分重要的意义。

    以此为基础,它既可以应用于模拟气候变化,洋流运向,甚至可以模拟出厄尔尼诺这样的全球性气象系统,也可以用于研究水管里的水流运动乃至于血液循环等流体运动。

    它也可应用到具体与日常生活相关的设计上,比如机翼的流体升力研究、车辆外壳的流体力学设计、空气污染效应的流动扩散分析等等。

    看到这里,是不是觉得它的用途大得惊人?

    问题是,N-S方程虽然意义重大也很实用,但它是一个非线性偏微分方程,求解非常困难和复杂,在求解思路或技术没有进一步发展和突破前,只有在某些十分简单的特例流动问题上才能求得其精确解。

    目前,全世界的数学家依然未能证明在三维座标、特定的初始条件下,N-S方程式是否有符合光滑性的解,也尚未证明若这样的解存在时,其动能有其上下界。

    上面这句话以通俗易懂的方式来解释,那就是现在整个世界的数学届,都在寻找N-S方程的通解,以证明该方程的解总是存在,以便通过这组方程准确地描述出任何流体、在任何起始条件下,未来任一时间点的情况。

    但对于N-S方程这样用数学理论阐明都困难的一组方程,想去证明这个方程组的解总是存在,又是何其的困难!

    所以经过两百年来无数的数学家投入无数的精力,也不过只有大约一百多个特解被解出来,唯一真正算得上是有点儿特殊成果的,是数学家让·勒雷在1934年时证明的,N-S方程的弱解存在,可以在平均值上满足N-S方程,但也仅此而已,无法在每一点上满足。

    此外夏裔数学家陶大师也曾写过一篇《Finitetimeblowupforanaveragedthree-dimensionalNavier-Stokesequation》的论文,将N-S方程全局正则性问题的超临界状态屏障形式化,让N-S方程的研究又有了新的推进,但距离解决“N-S方程的存在性与光滑性的问题”还很遥远。

    为此,“三维空间中的N-S方程组光滑解的存在性问题”,被米国克雷数学研究所设定为七个千禧年大奖难题之一。

    可以说,谁能将这个问题研究清楚,并找出和证明这个通解,那将会催化出无数新的数学工具、数学方法、物理理论,引领着数学届和物理届实现迈步式的大发展!

    到了那时,基本上物理的诺贝尔奖、马塞尔·格罗斯曼奖,数学的菲尔兹奖、克拉福德奖、沃尔夫数学奖等等大奖都可以拿到手软了,更别说由之带来巨大的社会经济效益、对人类文明的推动作用!

    正是深知这个纳维-斯托克斯方程的难度与意义,当秦克看到系统给予的奖励居然是《非线性偏微分方程‘纳维-斯托克斯方程’的探究与详解(前篇)》时,脑海里只有一个念头——拼了老命也得把这个奖励拿到手!

    虽然不知道这个“探究与详解”,是否就能证明“三维空间中的N-S方程组光滑解的存在性问题”并求出方程组的通解,但凭着秦克对这个系统那丰富得不可思议的知识库的了解,这份被评为S级的知识必然是惊世骇俗的!

    只要能将之理解透彻,哪怕只是“前篇”,也足够让秦克名扬世界的数学届了,到时别说是清木、北燕大学了,向来以傲慢著称的普林斯顿大学怕都来跪求他去读书,哦不,应该是任教!

    不过,秦克很快就冷静下来了,就算自己获得了这份知识,也得能看得懂啊!

    那起码得有极深厚的大学物理基础,以及大学数学基础,甚至更高层次的研究生、博士知识才行,不然知识给他了,他看不懂也是白瞎。

    哪怕将来看懂了、研究透彻了,想发表出来,也必须有足够的名气,有超级数学天才的光环,这样你发表的论文才有可能受到数学届的重视,并不会引人猜疑、拖去切片解剖。

    为此,秦克必须继续自己的数学竞赛之旅,IMO的金牌甚至是冠军,是必不可少的,物理方面的竞赛也得杀入世界赛事中,而数学方面的专业论文,也得开始着手了。

    从这方面来看,系统一直通过任务在引导着他走正确的道路。

    起码先发表一些学术水平的数学论文,积累名气是很有必要的第一步。

    以后有机会,物理的学术论文也得搞起来。

    竞赛与学术论文,两者相辅相成,才能奠定他未来顶尖数学家、顶尖物理学家的地位与形象,到时再发表“纳维-斯托克斯方程”的论文就顺理成章了。

    仰望完星空与未来,秦克重新把目光投注回到这条任务本身——发表第一篇学术论文,而且得是在国家级学术期刊发表一篇“数学分析”方面的专业学术论文。

    不过学术论文啊……

    我连作文都只写过八百字的,让我写学术论文?

    秦克陷入了沉思,然后决定向前排的施存远教授求教。毕竟这可是正儿八经名牌大学的研究生导师,虽然远州大学与清北是没法子比,但在华海省也是最好的大学了,位列985、211之列。

    施存远在数学方面的学术水平是毋庸质疑的。

    想到这里,秦克轻轻敲了敲前排的座位:“施老师,方便吗?我有个问题想请教您。”墨少堤的我真的只想当一个学神啊